Annals of Numerical Mathematics 2(1995)415-423 415

Asymptotics of zeros of incomplete gamma functions
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We consider the complex zeros with respect to z of the incomplete gamma functions y(a, z)
and I'(q, z), with a real and positive. In particular we are interested in the case that a is large.
The zeros are obtained from approximations that are computed by using uniform asymptotic
expansions of the incomplete gamma functions. The complex zeros of the complementary error
function are used as a first approximation. Applications are discussed for the zeros of the
partial sums s,(z) = 37=027/j! of exp(z).
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1. Introduction

The incomplete gamma functions are defined by

v(a,z) = Az 1" letdt, T(az)= /oo *~ et dt, (1.1)
and P(a,z) = vy(a,z)/T(a), Q(a,z) =T(a,z)/T(a), with
P(a,z) + Q(a,z) = 1. (1.2)

We take a > 0 and z complex, | argz| < m. The function v*(a,2) = z.““P'(a, z) is an
entire function of both parameters a and z. When a is a non-negative integer the
incomplete gamma functions are very simple:
n+1,z) =nll — e "s,(z)],
3 )=nl )] n=0,1,2,..., (1.3)
D(n+1,z) = nle "s,(2),

in which s,(z) is the first part of the Taylor series of the exponential function:
n z J
s => %, n=0,1,2,.... (1.4)
=0/
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We consider the zeros with respect to z of the incomplete gamma functions, with
a fixed and positive. The method for obtaining the zeros is based on asymptotic
expansions of the incomplete gamma functions, that hold for large values of a
and are uniformly valid with respect to z. We derive asymptotic expansions of the
zeros. The expansions are of the same kind as the expansion of the positive solution
z(a,q) of the inversion problem Q(a,z) = ¢ with g € (0,1); see Temme [4]. This
inversion problem is of importance in probability theory and mathematical statistics.

In K6lbig [2], the zeros of the incomplete gamma function +(a, z) are considered
from a different point of view. That paper gives in particular information on the
zeros with respect to a, with z real and positive. It gives curves of the zeros of
4(xw,x) in the w-plane; the trajectories are parameterised by the positive para-
meter x. Kdlbig’s paper contains many references to earlier papers.

The asymptotic distribution of zeros of the partial sums s,(z) of the exponential
function (see (1.3), (1.4)) has received much attention in the literature. For a recent
overview we refer to Varga [6].

2. Uniform asymptotic expansions of Pand Q

We obtain an asymptotic expansion of the zeros of the incomplete gamma func-
tions using uniform asymptotic expansion of these functions as given in Temme [3].
First we summarize these results.

The incomplete gamma functions have the following representations

P(a,z) = % erfc(—ﬂx/z/_z) — Ry(n),

(2.1)
Q(a,z) = 3 erfe(ny/a/2) + Ry(n);
erfc is the error function defined by
2 [* _p
erfcz = 7_77/2 e dt. (2.2)
The real parameter 7 in (2.1) is defined by
I=x-1-In)\, A=z/a, sign(n)=sign(A—1). (2.3)

The condition on the sign of n holds for positive values of z. For complex values we
define the branch of the square root by analytic continuation. Alternatively,

A—1-InA
=A-1),/2—== A=z/q, 24
1=0= 127 / (24)
where the square root takes the value 1 when A = 1.
For the function R,(n) we derived an asymptotic expansion. Writing
2
Pt /2

Ra(n) = \/2% Sa(n)v (25)
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we have

S n)Nig';—g?z, as a — oo. (2.6)

This expansion holds in an unbounded domain of the parameter 1 € R; in par-
ticular, the expansion holds in a large neighbourhood of the point n = 0, which
corresponds with z = g, a transition point in the asymptotic behaviour of the
incomplete gamma functions for large values of the parameter a. When a is posi-

tive, the expansion (2.6) holds uniformly with respect to z in the complex plane.
The first two coefficients in (2.6) are

Co(n) = 1 1~

— 3"—'

0 i (2.7)

O—17 (-17F 2(=1)

These two (and all higher coefficients) have a removable singularity at 7 =0

(A=1,z=a). All C,(n) are analytic at n= 0. The higher coefficients can be
obtained from the recursion

nCu(n) =

-1
1
Ci(n) = =3~

n

d n
d—nCn-l(ﬂ)‘*‘;\”_—_—I

where the numbers +, appear in the well-known asymptotic expansion of the Euler
gamma function. That is,

Yoy B, (2.8)

[ee] _ 1 o0 B
I'(a) ~ Z (=1)"pua™, f‘—*(_j ~ Z’)’,,a " a— oo, (2.9)
n=0 a n=0
where
I*(a) = /:—Za;e”a_”l"(a), a>0. (2.10)
The first few ~, are
=1 m=—-% "r=m V=3

3. Asymptotic expansions of the zeros of the incomplete gamma functions

We concentrate on the function Q(a, z). We first compute the zeros in terms of
the parameter 7, by using the representation in (2.1), with large values of a. After-
wards we compute A and z from (2.3).

We first repeat the steps in the inversion problem

Lerfc (n(+/a/2) + Ra(n) = ¢, (3.1)
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which has been considered in Temme [4] when g € [0, 1]. The procedure started with
the solution 7, of the equation

ferfe (n07/a7D) = 4, (32)

and the solution 7 defined by (3.1) is written as 7(q, a) = no(q,a) + €(my, a). The
quantity €(nq, @) is written in the form of the expansion

€ , € €
6(770,(1)’\';4;-‘—15-}-;5‘1’, (33)

as a — oo. The coefficients ¢; can be written explicitly as functions of 7.

In [4] a differential equation for € was derived from which the expansion (3.3)
could be obtained by perturbation methods. The same differential equation can
be used in the present problem to determine the zeros. Observe that (3.1) yields
the relation

dg d _d dz
d—n—%Q(a,Z) _Ez—'Q(a’Z)dn'

Using (1.1) and (2.3), one obtains after straightforward calculations

dg 1 a —ar?)2

1 __— . [Z 3.4
dn I'*(a) 27rf(n) € ’ (3.4)
where I'*(a) is defined in (2.10), and

the relation between 7 and A being given in (2.3). For small values of n we can
expand

fy=1-in+in*+.... (3.6)
From (3.2) it follows that
dq _ a —ap/2
i 3¢ . (3.7)

Upon dividing the two differential equations in (3.4), (3.7), the quantity q is elimi-
nated. That is,

dn _T7(a) st -nd)2

—=—" o)/ 2, 3.8

an = ) 8)
Replacing 7 with ny + €, one has

de]
€] _ pe () esemeef2),
an, (a)

a relation between € and 7, with a as (large) parameter.

fm+¢ [1 ;
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As remarked earlier, we use this differential equation also in the present case. The
value g = 0 gives in our earlier paper the trivial solution 7y = 00, i.e., z = 400; this
solution is not considered in the present case. Obviously, the above approach does
not require the condition ¢ € [0, 1]. In fact, ¢ may assume any complex value; when
we take g = 0 the quantity 7, is associated with the finite zeros of the complemen-
tary error function in (2.1). More information on these zeros will be given in the
following section.

The quantities ¢; introduced in (3.3) can be computed as in [4]. Let 7, be a
finite complex number satisfying (3.2), with ¢ a given positive number. Then 7,
will be a first order approximation (for large values of a) of 7, that solves the
equation

Yerfc (nv/a/2) + Ry(n) = g. (3.9)

This equation is equivalent with Q(a, Aa) = 0, the relation between A and 7 being
given in (2.4). Higher order approximations to n are obtained by writing

€1 € €3
~ 224324 1
Nemo+—+ 5+ 3+ (3.10)
The first few ¢; are given by
1
€ = _lnf n),
1= (n)
120, = + 12— 12f2 = 12fn— 121 %ne; — 12f7%¢, — 1* — 61%€2,
1263 = — 30+ 12 2ne; + 12/ %€, + 241 20, + 66> — 1212 + 60 /1€
+31 M+ 123+ 4214 + 1813 ° + 6 2 e} + 36/ *ney
+ 12803 f + 12E0° 2 — 12ne; + ey + /0 — 12fn+ 12632 14,

Here, the quantity n equals 7, and f is the function f(n), which is defined in (3.5).
For small values of 7, it is convenient to have series expansions of the coefficients ;
(note that 7y may be quite small, when a is large). From [4] we have

1,1 L2 7 .3, 5 4 11 S 10,6

€ =—3+3Nt 1w —a@n’ twE’ " wsT T iewe!l T
—_ _ 1 _ 1 533 2 _ 1579 3 109 4 10217 .5

€= —705~ 303" T 41207 — 30995207 T T7av6007 T Sioazae”l T
449 63149 20233 .2, 346793 .3

€3 = + 152060 — 209952001 3674160071 T+ 530070040071 - o

again with 7 replaced by 7q.

When we have obtained 1 from (3.10), we can compute A by inverting the
relation between n and ) in (2.4). For small values of n we can use a series expan-
sion of A in terms of 7. Inverting

I =10-1 =10 -1+ -1+ ..,
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Table 1

First five pairs zt = x; = iy, of zeros of erfcz.

k X + iyk

1 —1.35481... +i 1.99146. ..
2 -2.17704. .. +i 2.69114. ..
3 —2.78438... +i 3.23533...
4 —3.28741... +i 3.69730...
5 -3.725%. .. +i 4.10610. ..
we obtain

3 4 S
A=l+n+if+L&n’ —sen* + 5357 +....

4. More information on the zeros and numerical examples

From Fettis et al. [1] we know that two infinite strings of zeros of erfc z occur in
the neighbourhood of the diagonals y = £x in the left half plane x < 0, z = x + iy.
The first few zeros are given in table 1. Numerical values of the first 100 zeros of
erfcz and asymptotic approximations of the zeros are also given by Fettis et al.
A first order approximation reads

Zf ~ (=1xi)y/(k—1/8)x. (4.1)

When 7 is a zero of equation (3.9) and we use (3.10) as an asymptotic expansion
of n for large positive values of a, we find that the A-zeros of Q(a, Aa) in terms of the
parameter 7 occur in the neighbourhood of the diagonals Rn = +7n, with Rn < 0.
It is therefore of interest to know the original A-contours of these diagonals under
the mapping (2.3).

To study the mapping and the pre-images of the diagonals, let us write
n=a+if and A = pexp(ip). Then the relation between n and A given in (2.3)
can be written in terms of the real equations

Lo? ) =pcos¢— 1 —Inp,
aff = psing — ¢.

On the diagonals o = £ the first equation becomes pcos ¢ = 1 + In p. In terms of
Cartesian coordinates (A = x + iy) we have

(4.2)

x4yt = D), (4.3)
This equation defines an almond-shaped closed curve between x =1 and
x=—0.278..., the solution of the equation —x = exp(x — 1); see figure 1. In [6]

this curve is called the Szegé curve and defined as

Dip={AeC:|X'"*=1 and |\<1}.
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ASA

Figure 1. \-zeros of I'(a, Aa) with a = 30.1, along curves defined by x* + ) = exp[2(x — 1)]; shown

are the zeros with phases in the interval [0,27]. There is a conjugate set of zeros with phases in the
interval {27, 0].

As discussed in detail in [6], when a = n (integer) the n A-zeros of I'(n, An) (a poly-
nomial in ), see the second line in (1.3)) approach this curve when n — .

The equation in (4.3) also defines solutions for x > 1; there are two branches
starting in x=1, y=0 and extending to infinity along the curves
¥ = *exp(x — 1). These branches have no meaning in connection with the zeros
of T'(a,Aa) when a is an integer. However, when a is not an integer I'(a, Aa) has
an infinity of A-zeros of which about [a] zeros are located near D, with phases
in the interval (—, 7). An infinite number of zeros is located near the branches
of equation (4.3) with x > 1, but the phases of the zeros are in the intervals
(—2m,—7) and (7, 27).

To see this, we give more details on the mapping given in (4.2). Finite singular
points of the mapping A — n(\) can be found by considering the derivative
dn/dx= (A —1)/(n)\). The point A =1 is a regular point, but A\ = exp(2min)
(n = £1,42,...) are points where the derivative dn/d vanishes. They correspond
to the n-values satisfying n2/2 = —2min, giving the singular points =
2+y/mexp(+3ni/4) for n = 1. The points n* are located at the diagonals in the left
half plane, and they correspond to A = exp(22ni). It can be proved (details will
not be given here) that the A-sector |arg )| < 2, (A # 0) is mapped conformally
and one-to-one onto the n-plane cut along two branch lines, which are parts of
the hyperbolas o = £27 with o < — V2. The boundaries of this sector, that
is, the half lines arg A\ = £2m are mapped onto these branch cuts. For more
details we refer to [3].

To understand the role of the diagonals in the left half n-plane in connection with
the location of the zeros of the incomplete gamma function I'(a, Aa) in the A-plane,
we concentrate on a few points O, 4, B, C on the diagonal : = -8, B = 0 (because
of the symmetry it is sufficient to consider 8 > 0). Let O denote the origin, 4 the




422 N.M. Temme | Incomplete gamma functions

point where a3 = —, B the point where o = -2, and C a point where o8 < —2.
Then the segment [0, A] corresponds to the upper part of the almond-shaped curve
in figure 1, [4, B] corresponds to the lower part of this curve (the phase of \is now in
the interval [r, 2n]), and [B, C] with part of the branch extending to the right of
A = 1, with T) < 0 (and with the phase of ) still in [, 27]).

This description of the mapping with respect to the diagonals in the left n-plane
makes clear how the approximations of the zeros of I'(a, Aa) in the n-plane are
mapped onto the A-plane. The n-zeros in the neighbourhood of the segment
[0, 4] are mapped onto the upper part of the almond-shaped curve in the A-
plane. From the estimates given for the zeros of the error function, see (4.1), we
see that there are about a/2 zeros along this curve. Another a/2 are located
along the lower part of the almond (with phases belonging to [, 27]); they corre-
spond to n-values in the neighbourhood of the segment [A4,B]. When a =n
(integer) there are exactly n zeros along the complete almond. In that case it is
not needed to prescribe the phases of the zeros on the lower part of the almond,
since then I'(a, Aa) is not multi-valued.

The zeros corresponding to 7-zeros along the diagonal a = ( in the third quad-
rant of the n-plane yield a conjugate set of zeros in the A-plane. The diagonals in the
right half plane a > 0 correspond to the branches in the A-plane that start in the
point A =1 and extend to +ico along the curves y = texp(x — 1), with phases
of X belonging to [0, +7/2]. Along these contours in the A-plane we find zeros of
¥(a, Aa). This follows from the minus sign in the error function representation of
the function P(a,z) in (2.1).

In a separate publication (a first orientation on the computation of incomplete
gamma functions for complex parameters is given in [5]) we will verify numerically
the asymptotic expansions of the zeros of I'(a, \a) and v(a, \a) derived in this
paper.

In figure 1 we show the first 50 zeros of I'(a, Aa) with a = 30.1 with phases in
the interval (0,27). In the upper half plane the phases of the zeros are in the
interval (0,7), in the lower half plane they are in the interval (m,27). A similar
picture can be given for zeros with phase in (—2m,0). When a is an integer the
function I'(a, Aa) is single-valued, and then we can consider phases just in the

interval (—m,m). In that case the zeros along the branches extending to infinity
do not occur.
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